Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins

نویسندگان

  • Tristan G. Heintz
  • Richard Eva
  • James W. Fawcett
چکیده

Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal synapse formation regulated by intercellular adhesion molecules-5 (ICAM-5)

.................................................................................................................... 9 REVIEW OF THE LITERATURE .................................................................................. 10 1. Synapses and spines ............................................................................................... 10 1.1 Ultrastructure of synapses .................

متن کامل

Eph/ephrin signaling in morphogenesis, neural development and plasticity.

Ephrins are cell-surface-tethered ligands for Eph receptors, the largest family of receptor tyrosine kinases. During development, the Eph/ephrin cell communication system appears to influence cell behavior such as attraction/repulsion, adhesion/de-adhesion and migration, thereby influencing cell fate, morphogenesis and organogenesis. During adulthood, the Eph/ephrin system continues to play rol...

متن کامل

Eph Receptors Are Involved in the Activity-Dependent Synaptic Wiring in the Mouse Cerebellar Cortex

Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the pr...

متن کامل

EPHB receptor signaling in dendritic spine development.

Dendritic spines are small bulbous protrusions on the surface of dendrites that serve as principle postsynaptic targets for excitatory synapses (1-3). Structural modifications of dendritic spines have been implicated as a cellular basis for learning and memory. Morphological abnormalities of spines are observed in some neurological diseases such as mental retardation and schizophrenia (4). Thus...

متن کامل

The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases.

Eph receptors play critical roles in the establishment and remodeling of neuronal connections, but the signaling pathways involved are not fully understood. We have identified a novel interaction between the C terminus of the EphA4 receptor and the PDZ domain of the GTPase-activating protein spine-associated RapGAP (SPAR). In neuronal cells, this binding mediates EphA4-dependent inactivation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016